Ce12V6 Clusters with Multi‐Enzymatic Activities for Sepsis Treatment

Advanced Healthcare Materials, Volume 14, Issue 8, March 25, 2025.

Mar 26, 2025 - 09:34
 0
Ce12V6 Clusters with Multi-Enzymatic Activities for Sepsis Treatment

Atomically precise Ce12V6 clusters with small size show excellent GPx-like activity and good activities mimic SOD and POD. The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines and consequently rescue the multi-organ failure in the LPS-induced sepsis model.

Abstract

Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·− and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.